bitcoin
Bitcoin (BTC) $ 103,411.71
ethereum
Ethereum (ETH) $ 3,884.02
tether
Tether (USDT) $ 1.00
bnb
BNB (BNB) $ 713.32
xrp
XRP (XRP) $ 2.39
cardano
Cardano (ADA) $ 1.07
usd-coin
USDC (USDC) $ 1.00
matic-network
Polygon (MATIC) $ 0.596561
binance-usd
BUSD (BUSD) $ 1.00
dogecoin
Dogecoin (DOGE) $ 0.40125
okb
OKB (OKB) $ 53.92
polkadot
Polkadot (DOT) $ 8.82
shiba-inu
Shiba Inu (SHIB) $ 0.000027
tron
TRON (TRX) $ 0.280469
uniswap
Uniswap (UNI) $ 16.57
wrapped-bitcoin
Wrapped Bitcoin (WBTC) $ 102,757.53
dai
Dai (DAI) $ 1.00
litecoin
Litecoin (LTC) $ 117.42
staked-ether
Lido Staked Ether (STETH) $ 3,881.08
solana
Solana (SOL) $ 218.88
avalanche-2
Avalanche (AVAX) $ 48.92
chainlink
Chainlink (LINK) $ 28.44
cosmos
Cosmos Hub (ATOM) $ 8.87
the-open-network
Toncoin (TON) $ 6.31
ethereum-classic
Ethereum Classic (ETC) $ 32.66
leo-token
LEO Token (LEO) $ 9.35
filecoin
Filecoin (FIL) $ 6.52
bitcoin-cash
Bitcoin Cash (BCH) $ 530.91
monero
Monero (XMR) $ 216.38
Sunday, December 15, 2024
spot_img
bitcoin
Bitcoin (BTC) $ 103,411.71
ethereum
Ethereum (ETH) $ 3,884.02
tether
Tether (USDT) $ 1.00
bnb
BNB (BNB) $ 713.32
usd-coin
USDC (USDC) $ 1.00
xrp
XRP (XRP) $ 2.39
binance-usd
BUSD (BUSD) $ 1.00
dogecoin
Dogecoin (DOGE) $ 0.40125
cardano
Cardano (ADA) $ 1.07
solana
Solana (SOL) $ 218.88
matic-network
Polygon (MATIC) $ 0.596561
polkadot
Polkadot (DOT) $ 8.82
tron
TRON (TRX) $ 0.280469
HomeMarketDaniel Balint: Discounting invariant FTAP for big monetary markets

Daniel Balint: Discounting invariant FTAP for big monetary markets

Summary: For giant monetary markets as launched in Kramkov and Kabanov 94, there are a number of current absence-of-arbitrage circumstances within the literature. All of them have in widespread that they rely in a vital method on the discounting issue. We introduce a brand new idea, generalizing NAA1 (Ok&Ok 94) and NAA (Rokhlin 08), which is invariant with respect to discounting. We derive a twin characterization by a contiguity property (FTAP).We examine connections to the in finite time horizon framework (as for instance in Karatzas and Kardaras 07) and illustrate unfavorable consequence by counterexamples. Primarily based on joint work with M. Schweizer.

Recording throughout the assembly “Progressive Analysis in Mathematical Finance” the September 4, 2018 on the Centre Worldwide de Rencontres Mathématiques (Marseille, France)

Filmmaker: Guillaume Hennenfent

Discover this video and different talks given by worldwide mathematicians on CIRM’s Audiovisual Arithmetic Library: http://library.cirm-math.fr. And uncover all its functionalities:
– Chapter markers and key phrases to look at the components of your alternative within the video
– Movies enriched with abstracts, bibliographies, Arithmetic Topic Classification
– Multi-criteria search by writer, title, tags, mathematical space

supply

RELATED ARTICLES

Most Popular